Hecho

import os

import numpy as np
# Aux imports
import pandas as pn

# Importing gempy
import gempy as gp
import gempy_viewer as gpv

Loading surface points from repository:

With pandas we can do it directly from the web and with the right args we can directly tidy the data in gempy style:

data_path = os.path.abspath('../../data/input_data/Hecho')
dfs = []

# First stratigraphic data
for letter in range(1, 10):
    dfs.append(pn.read_csv(
        filepath_or_buffer=data_path + '/H' + str(letter) + '.csv',
        sep=';',
        names=['X', 'Y', 'Z', 'surface', '_'],
        header=0
    ))

# Also faults
for f in range(1, 4):
    fault_df = pn.read_csv(
        filepath_or_buffer=data_path + '/F' + str(f) + 'Line.csv',
        sep=';',
        names=['X', 'Y', 'Z'],
        header=0
    )
    fault_df['surface'] = 'f' + str(f)
    dfs.append(fault_df)

# We put all the surfaces points together because is how gempy likes it:
surface_points = pn.concat(dfs, sort=True)
surface_points.reset_index(inplace=True, drop=False)
surface_points.tail()
index X Y Z _ surface
761 6 11.14 -0.17 1.53 NaN f3
762 7 11.17 0.28 1.68 NaN f3
763 8 11.16 0.40 1.82 NaN f3
764 9 11.07 0.03 1.92 NaN f3
765 10 10.89 -0.43 2.10 NaN f3


Now we do the same with the orientations:

orientations = pn.read_csv(
    filepath_or_buffer=data_path + '/Dips.csv',
    sep=';',
    names=['X', 'Y', 'Z', 'G_x', 'G_z', '_'],
    header=0
)
# Orientation needs to belong to a surface. This is mainly to categorize to which series belong and to
# use the same color
orientations['surface'] = 0

# We fill the laking direction with a dummy value:
orientations['G_y'] = 0

# Replace -99999.00000 with NaN
orientations.replace(-99999.00000, np.nan, inplace=True)

# Drop irrelevant columns
orientations.drop(columns=['_'], inplace=True)

# Remove rows containing NaN
orientations.dropna(inplace=True)

Data initialization:

Suggested size of the axis-aligned modeling box: Origin: 0 -0.5 0 Maximum: 16 0.5 4.5

Suggested resolution: 0.05m (grid size 321 x 21 x 91)

%%

surface_points_table: gp.data.SurfacePointsTable = gp.data.SurfacePointsTable.from_arrays(
    x=surface_points['X'].values,
    y=surface_points['Y'].values,
    z=surface_points['Z'].values,
    names=surface_points['surface'].values.astype(str)
)

orientations_table: gp.data.OrientationsTable = gp.data.OrientationsTable.from_arrays(
    x=orientations['X'].values,
    y=orientations['Y'].values,
    z=orientations['Z'].values,
    G_x=orientations['G_x'].values,
    G_y=orientations['G_y'].values,
    G_z=orientations['G_z'].values,
    names=orientations['surface'].values.astype(str),
    name_id_map=surface_points_table.name_id_map  # ! Make sure that ids and names are shared
)

structural_frame: gp.data.StructuralFrame = gp.data.StructuralFrame.from_data_tables(
    surface_points=surface_points_table,
    orientations=orientations_table
)

geo_model: gp.data.GeoModel = gp.create_geomodel(
    project_name='Moureze',
    extent=[0, 16, -0.5, 0.5, 0, 4.5],
    resolution=[321, 21, 91],
    structural_frame=structural_frame
)

gp.set_section_grid(
    grid=geo_model.grid,
    section_dict={
            'section': ([0, 0], [16, 0], [321, 91])
    },
)
Active grids: GridTypes.NONE|SECTIONS|DENSE
start stop resolution dist
section [0, 0] [16, 0] [321, 91] 16.0


We need an orientation per series/fault. The faults does not have orientation so the easiest is to create an orientation from the surface points availablle:

f_names = ['f1', 'f2', 'f3']
for fn in f_names:
    element = geo_model.structural_frame.get_element_by_name(fn)
    new_orientations = gp.create_orientations_from_surface_points_coords(
        xyz_coords=element.surface_points.xyz
    )
    gp.add_orientations(
        geo_model=geo_model,
        x=new_orientations.data['X'],
        y=new_orientations.data['Y'],
        z=new_orientations.data['Z'],
        pole_vector=new_orientations.grads,
        elements_names=fn
    )

Now we can see how the data looks so far:

gpv.plot_2d(geo_model)
Cell Number: mid Direction: y
<gempy_viewer.modules.plot_2d.visualization_2d.Plot2D object at 0x7f87c7f2eda0>

By default all surfaces belong to one unique series.

Structural Groups: StructuralGroup:
Name:default_formation
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:0

StructuralElement:
Name:0.78

StructuralElement:
Name:1.15

StructuralElement:
Name:1.9

StructuralElement:
Name:2.5

StructuralElement:
Name:3.1

StructuralElement:
Name:3.9

StructuralElement:
Name:4.4

StructuralElement:
Name:5.2

StructuralElement:
Name:f1

StructuralElement:
Name:f2

StructuralElement:
Name:f3
Fault Relations:
default_fo...
default_formation
True
False


We will need to separate with surface belong to each series:

gp.map_stack_to_surfaces(
    gempy_model=geo_model,
    mapping_object={'Fault1': 'f1', 'Fault2': 'f2', 'Fault3': 'f3'}
)
Structural Groups: StructuralGroup:
Name:Fault1
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:f1

StructuralGroup:
Name:Fault2
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:f2

StructuralGroup:
Name:Fault3
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:f3

StructuralGroup:
Name:default_formation
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:0

StructuralElement:
Name:0.78

StructuralElement:
Name:1.15

StructuralElement:
Name:1.9

StructuralElement:
Name:2.5

StructuralElement:
Name:3.1

StructuralElement:
Name:3.9

StructuralElement:
Name:4.4

StructuralElement:
Name:5.2
Fault Relations:
Fault1Fault2Fault3default_fo...
Fault1
Fault2
Fault3
default_formation
True
False


However if we want the faults to offset the “Default series”, they will need to be more recent (higher on the pile). We can modify the order by:

Lastly, so far we did not specify which series/faults are actula faults:

gp.set_is_fault(
    frame=geo_model,
    fault_groups=['Fault1', 'Fault2', 'Fault3']
)
Structural Groups: StructuralGroup:
Name:Fault1
Structural Relation:StackRelationType.FAULT
Elements:
StructuralElement:
Name:f1

StructuralGroup:
Name:Fault2
Structural Relation:StackRelationType.FAULT
Elements:
StructuralElement:
Name:f2

StructuralGroup:
Name:Fault3
Structural Relation:StackRelationType.FAULT
Elements:
StructuralElement:
Name:f3

StructuralGroup:
Name:default_formation
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:0

StructuralElement:
Name:0.78

StructuralElement:
Name:1.15

StructuralElement:
Name:1.9

StructuralElement:
Name:2.5

StructuralElement:
Name:3.1

StructuralElement:
Name:3.9

StructuralElement:
Name:4.4

StructuralElement:
Name:5.2
Fault Relations:
Fault1Fault2Fault3default_fo...
Fault1
Fault2
Fault3
default_formation
True
False


The default range is always the diagonal of the extent. Since in this model data is very close we will need to reduce the range to 5-10% of that value:

geo_model.interpolation_options.kernel_options.range *= 0.2

Explanation of model characteristics and adjustments This model has characteristics that make it difficult to get the right default values: - It is large, and we want high resolution - Some series have a large conditional number (i.e., the model input is not very stable) To address these issues: - Reduce the chunk size during evaluation to trade speed for memory - Reduce the std of the error parameter in octree refinement, which evaluates fewer voxels but may leave some without refinement Enable debugging options to help tune these parameters.

Setting verbose and condition number options for debugging

geo_model.interpolation_options.kernel_options.compute_condition_number = True

Observations and parameter adjustments The octree refinement is making the octree grid almost dense, and smaller chunks are needed to avoid running out of memory. Adjusting parameters accordingly:

geo_model.interpolation_options.evaluation_options.evaluation_chunk_size = 50_000
gp.compute_model(
    gempy_model=geo_model,
    engine_config=gp.data.GemPyEngineConfig(
        backend=gp.data.AvailableBackends.PYTORCH,
        dtype='float64'
    )
)
Setting Backend To: AvailableBackends.PYTORCH
Condition number: 263879.392299568.
Chunking done: 206 chunks
Condition number: 597671.5533391963.
Chunking done: 258 chunks
Condition number: 112458.69653965058.
Chunking done: 206 chunks
Condition number: 20512698.067502074.
Chunking done: 10501 chunks
Condition number: 20512698.06753521.
Chunking done: 14 chunks
Chunking done: 14 chunks
Chunking done: 21 chunks
Chunking done: 21 chunks
Chunking done: 80 chunks
Condition number: 20512698.06753521.
Chunking done: 80 chunks
Chunking done: 11 chunks
Chunking done: 14 chunks
Chunking done: 11 chunks
Chunking done: 548 chunks
Condition number: 20512698.067502074.
Chunking done: 36 chunks
Condition number: 20512698.06753521.
Chunking done: 34 chunks
Chunking done: 33 chunks
Chunking done: 7 chunks
Chunking done: 246 chunks
Solutions: 4 Octree Levels, 12 DualContouringMeshes


gpv.plot_2d(geo_model, cell_number=[10], series_n=3, show_scalar=True)
Cell Number: 10 Direction: y
<gempy_viewer.modules.plot_2d.visualization_2d.Plot2D object at 0x7f87cc833be0>
gpv.plot_2d(geo_model, cell_number=[10], show_data=True)
Cell Number: 10 Direction: y
<gempy_viewer.modules.plot_2d.visualization_2d.Plot2D object at 0x7f87cc8d2470>
gpv.plot_2d(geo_model, section_names=['section'], show_data=True)
section
<gempy_viewer.modules.plot_2d.visualization_2d.Plot2D object at 0x7f87cc832200>

sphinx_gallery_thumbnail_number = 3

gpv.plot_3d(geo_model, kwargs_plot_structured_grid={'opacity': .2})
Hecho
<gempy_viewer.modules.plot_3d.vista.GemPyToVista object at 0x7f87c412f250>

Total running time of the script: (1 minutes 50.980 seconds)

Gallery generated by Sphinx-Gallery