3.1: Simple example of kriging in gempy

In this notebook it will be shown how to create a kriged or simulated field in a simple geological model in gempy. We start by creating a simple model with three horizontally layered units, as shown in the gempy examples.

Importing GemPy

import gempy as gp
import gempy_viewer as gpv

# Importing auxiliary libraries
import numpy as np
import matplotlib.pyplot as plt
import os

# new for this
from gempy_plugins.kriging import kriging

np.random.seed(5555)

Creating the model by importing the input data and displaying it:

data_path = os.path.abspath('../../')

geo_data: gp.data.GeoModel = gp.create_geomodel(
    project_name='kriging',
    extent=[0, 1000, 0, 50, 0, 1000],
    resolution=[50, 10, 50],
    refinement=1,
    importer_helper=gp.data.ImporterHelper(
        path_to_orientations=data_path + "/data/input_data/jan_models/model1_orientations.csv",
        path_to_surface_points=data_path + "/data/input_data/jan_models/model1_surface_points.csv",
    )
)

Setting and ordering the units and series:

gp.map_stack_to_surfaces(
    gempy_model=geo_data,
    mapping_object={
        "Strat_Series": ('rock2', 'rock1'),
        "Basement_Series": ('basement')
    }
)
Could not find element 'basement' in any group.
Structural Groups: StructuralGroup:
Name:Strat_Series
Structural Relation:StackRelationType.ERODE
Elements:
StructuralElement:
Name:rock2

StructuralElement:
Name:rock1
Fault Relations:
Strat_Seri...
Strat_Series
True
False


Calculating the model:

no mesh computed as basically 2D model

Setting Backend To: AvailableBackends.numpy

So here is the very simple, basically 2D model that we created:

gpv.plot_2d(geo_data, cell_number=0, show_data=False)
Cell Number: 0 Direction: y
<gempy_viewer.modules.plot_2d.visualization_2d.Plot2D object at 0x7f87cc7cd270>

1) Creating domain

Let us assume we have a couple of measurements in a domain of interest within our model. In our case the unit of interest is the central rock layer (rock1). In the kriging module we can define the domain by handing over a number of surfaces by id - in this case the id of rock1 is 2. In addition we define four input data points in cond_data, each defined by x,y,z coordinate and a measurement value.

conditioning data (data measured at locations)

cond_data = np.array([[100, .5, 500, 2], [900, .5, 500, 1],
                      [500, .5, 550, 1], [300, .5, 400, 5]])

creating a domain object from the gempy solution, a defined domain conditioning data

domain = kriging.Domain(
    model_solutions=sol,
    transform=geo_data.input_transform,
    domain=[2],
    data=cond_data
)

2) Creating a variogram model

variogram_model = kriging.VariogramModel(
    theoretical_model='exponential',
    range_=200,
    sill=np.var(cond_data[:, 3])
)
variogram_model.plot(type_='both', show_parameters=True)
plt.show()
Models of spatial correlation

3) Kriging interpolation

In the following we define an object called kriging_model and set all input parameters. Finally we generate the kriged field.

kriging_solution = kriging.create_kriged_field(domain, variogram_model)

The result of our calculation is saved in the following dataframe, containing an estimated value and the kriging variance for each point in the grid:

kriging_solution.results_df.head()
X Y Z estimated value estimation variance
0 10.0 2.5 410.0 2.24 2.10
1 10.0 2.5 430.0 2.19 1.98
2 10.0 2.5 450.0 2.14 1.87
3 10.0 2.5 470.0 2.10 1.77
4 10.0 2.5 490.0 2.06 1.72


It is also possible to plot the results in cross section similar to the way gempy models are plotted.

from gempy_viewer.modules.plot_2d.visualization_2d import Plot2D

plot_2d: Plot2D = gpv.plot_2d(
    model=geo_data,
    cell_number=0,
    show_data=False,
    show=False,
    kwargs_lithology={ 'alpha': 0.5 }
)
kriging.plot_kriging_results(
    geo_data=geo_data,
    kriging_solution=kriging_solution,
    plot_2d=plot_2d,
    title='Kriging interpolation: Estimated values',
    result_column=['estimated value']
)
Kriging interpolation: Estimated values
plot_2d_both = gpv.plot_2d(
    model=geo_data,
    cell_number=[0, 0],
    show_data=False,
    show=False,
    kwargs_lithology={ 'alpha': 0.5 }
)

kriging.plot_kriging_results(
    geo_data=geo_data,
    kriging_solution=kriging_solution,
    plot_2d=plot_2d_both,
    title='Kriging interpolation: Estimated values',
    result_column=['estimated value', 'estimation variance']
)
Kriging interpolation: Estimated values, Kriging interpolation: Estimated values

4) Simulated field

Based on the same objects (domain and varigoram model) also a simulated field (stationary Gaussian Field) can be generated. A Sequential Gaussian Simulation approach is applied in this module:

solution_sim = kriging.create_gaussian_field(domain, variogram_model)
solution_sim.results_df.head()
X Y Z estimated value estimation variance
1774 10.0 2.5 410.0 4.42 0.12
4701 10.0 2.5 430.0 4.89 0.11
3463 10.0 2.5 450.0 4.87 0.18
3227 10.0 2.5 470.0 4.98 0.22
4528 10.0 2.5 490.0 3.75 0.11


solution_sim.results_df['estimated value']
1774    4.42
4701    4.89
3463    4.87
3227    4.98
4528    3.75
        ...
1712    3.54
390     3.86
1039    4.13
3379    3.14
4090    2.45
Name: estimated value, Length: 5000, dtype: float64
plot_2d: Plot2D = gpv.plot_2d(
    model=geo_data,
    cell_number=0,
    show_data=False,
    show=False,
    kwargs_lithology={ 'alpha': 0.5 }
)
kriging.plot_kriging_results(
    geo_data=geo_data,
    kriging_solution=solution_sim,
    plot_2d=plot_2d,
    title='Kriging interpolation: Estimated values',
    result_column=['estimated value']
)
Kriging interpolation: Estimated values
plot_2d_both = gpv.plot_2d(
    model=geo_data,
    cell_number=[0, 0],
    show_data=False,
    show=False,
    kwargs_lithology={ 'alpha': 0.5 }
)

kriging.plot_kriging_results(
    geo_data=geo_data,
    kriging_solution=solution_sim,
    plot_2d=plot_2d_both,
    title='Kriging interpolation: Estimated values',
    result_column=['estimated value', 'estimation variance']
)
# sphinx_gallery_thumbnail_number = 3
Kriging interpolation: Estimated values, Kriging interpolation: Estimated values

Total running time of the script: (13 minutes 1.928 seconds)

Gallery generated by Sphinx-Gallery