.. GeMpy documentation master file, created by
sphinx-quickstart on Wed Dec 14 12:44:40 2016.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
.. ../logos/gempy1.png
:width: 30%
About
=====
Open-source software for implicit 3D structural geological modeling in Python.
******************************************************************************
Overview
--------
``GemPy`` is a Python-based, community-driven, **open-source geomodeling library**. It is
capable of constructing complex **3D geological models** including various features such as
fold structures, fault networks and unconformities, based on an underlying
powerful **implicit** approach. From the ground up, ``GemPy`` was designed to be easily embedded in probabilistic frameworks for conducting
uncertainty analysis regarding subsurface structures.
.. Check out the documentation either in `gempy.org `_
(better option), or `read the docs `_.
3D models created with GemPy may look like this:
.. image:: ./_images/AlesModel_example.png
Contents:
.. toctree::
:maxdepth: 1
self
installation
.. toctree::
:maxdepth: 1
tutorials/index
examples/index
.. toctree::
:maxdepth: 1
external/external_examples
.. toctree::
:maxdepth: 1
api_reference
Features
--------
Geological features
^^^^^^^^^^^^^^^^^^^
``GemPy`` is capable of modeling complex 3D geological scenarios, including:
* Multiple conformal layers (e.g. sequences of sedimentary layers)
* Several sequences of layers, with conformal continuation or unconformities
* Magmatic bodies of (almost) arbitrary shapes
* Faults (offset calculated automatically from affected geological objects)
* Full fault networks (faults affecting faults)
* Folds (affecting single layers or entire layer stacks, including overturned and recumbent folds)
Combining these elements in GemPy allows for the generation of realistic
3D geological models, on a par with most commercial geomodeling software.
Interpolation approach
^^^^^^^^^^^^^^^^^^^^^^
The generation of complex structural settings is based on the powerful
interpolation algorithm underlying ``GemPy``\ , a unviersal cokriging method
devised by `Lajaunie et al. (1997)` and extended by `Calcagno et al. (2008)`\ .
This method is used to interpolate a 3D scalar field, such that geologically
significant interfaces are isosurfces in this field.
The algorithm allows for a direct integration of two of the most relevant
geological input data types:
* **Surface contact points**\ : 3D coordinates of points marking the boundaries
between different features (e.g. layer interfaces, fault planes, unconformities).
* **Orientation measurements**\ : Orientation of the poles perpendicular to
the dipping of surfaces at any point in 3D space.
``GemPy`` also allows for the definition of topological elements such as
combining multiple stratigraphic sequences and
complex fault networks to be considered in the modeling process.
.. image:: ./_images/data_to_model.png
Integrated visualization
^^^^^^^^^^^^^^^^^^^^^^^^
Models generated with ``GemPy`` can be visualized in several ways:
* direct visualization of 2D model sections (or geological maps) using
`matplotlib `_, including hillshading and other options for intuitive
representation of results;
* 3D visualization using `Pyvista `_, including interactive plots
.. image:: _images/3D_view_pyvista_example.png
:target: https://cgre-aachen.github.io/gempy/_images/sphx_glr_ch1_1_basics_009.png
:width: 70%
For a more detailed elaboration of the theory behind ``GemPy``\ , we refer to the
**open access scientific publication**\ :
`\ "GemPy 1.0: open-source stochastic geological modeling and inversion"
by de la Varga et al. (2019) `_.
Publications using GemPy
------------------------
- Marquetto, L., Jüstel, A., Troian, G.C., Reginato, P.A.R & Simões, J.C. (2024). `Developing a 3D hydrostratigraphical model of the emerged part of the Pelotas Basin along the northern coast of Rio Grande do Sul state, Brazil `_. Environmental Earth Sciences, 83, 329.
- Brisson, S., Wellmann, F., Chudalla, N., von Harten, J., & von Hagke, C. (2023). `Estimating uncertainties in 3-D models of complex fold-and-thrust belts: A case study of the Eastern Alps triangle zone `_. Applied Computing and Geosciences, 18, 100115.
- Liang, Z., de la Varga, M., & Wellmann, F. (2023). `Kernel method for gravity forward simulation in implicit probabilistic geologic modeling `_. Geophysics, 88(3), G43-G55.
- Kong, S., Oh, J., Yoon, D., Ryu, D. W., & Kwon, H. S. (2023). `Integrating Deep Learning and Deterministic Inversion for Enhancing Fault Detection in Electrical Resistivity Surveys `_. Applied Sciences, 13(10), 6250.
- Thomas, A. T., Micallef, A., Duan, S., & Zou, Z. (2023). `Characteristics and controls of an offshore freshened groundwater system in the Shengsi region, East China Sea `_. Frontiers in Earth Science, 11, 1198215.
- Haehnel, P., Freund, H., Greskowiak, J., & Massmann, G. (2023). `Development of a three-dimensional hydrogeological model for the island of Norderney (Germany) using GemPy `_. Geoscience Data Journal, 00, 1–17.
- Jüstel, A., de la Varga, M., Chudalla, N., Wagner, J. D., Back, S., & Wellmann, F. (2023). `From Maps to Models-Tutorials for structural geological modeling using GemPy and GemGIS `_. Journal of Open Source Education, 6(66), 185.
- Thomas, A. T., von Harten, J., Jusri, T., Reiche, S., & Wellmann, F. (2022). `An integrated modeling scheme for characterizing 3D hydrogeological heterogeneity of the New Jersey shelf `_. Marine Geophysical Research, 43, 11.
- Sehsah, H., Eldosouky, A. M., & Pham, L. T. (2022). `Incremental Emplacement of the Sierra Nevada Batholith Constrained by U-Pb Ages and Potential Field Data `_. The Journal of Geology, 130(5), 381-391.
- von Harten, J., de la Varga, M., Hillier, M., & Wellmann, F. (2021). `Informed Local Smoothing in 3D Implicit Geological Modeling `_. Minerals 2021, 11, 1281.
- Schaaf, A., de la Varga, M., Wellmann, F., & Bond, C. E. (2021). `Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1 `_. Geosci. Model Dev., 14(6), 3899-3913. doi:10.5194/gmd-14-3899-2021.
- Güdük, N., de la Varga, M., Kaukolinna, J., & Wellmann, F. (2021). `Model-Based Probabilistic Inversion Using Magnetic Data: A Case Study on the Kevitsa Deposit `_. Geosciences, 11(4):150.
- Wu, J., & Sun, B. (2021). `Discontinuous mechanical analysis of manifold element strain of rock slope based on open source Gempy `_. In E3S Web of Conferences (Vol. 248, p. 03084). EDP Sciences.
- Stamm, F. A., de la Varga, M., & Wellmann, F. (2019). `Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models `_. Solid Earth, 10, 2015–2043.
- Wellmann, F., Schaaf, A., de la Varga, M., & von Hagke, C. (2019). `From Google Earth to 3D Geology Problem 2: Seeing Below the Surface of the Digital Earth `_. In Developments in Structural Geology and Tectonics (Vol. 5, pp. 189-204). Elsevier.
References
----------
* de la Varga, M., Schaaf, A., and Wellmann, F.: GemPy 1.0: `open-source stochastic geological modeling and inversion,` Geosci. Model Dev., 12, 1–32, https://doi.org/10.5194/gmd-12-1-2019, 2019.
* Calcagno, P., Chilès, J. P., Courrioux, G., & Guillen, A. (2008). `Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules.` Physics of the Earth and Planetary Interiors, 171(1-4), 147-157.
* `Lajaunie, C., Courrioux, G., & Manuel, L. (1997). `Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation.` Mathematical Geology, 29(4), 571-584.
Indices and tables
==================
* :ref:`genindex`
* :ref:`search`
.. image:: _static/logos/logo_CGRE.png
:width: 40%
.. image:: _static/logos/Terranigma.png
:width: 40%